(8x-6)/(x^2-13x+40)+(1-7x)/(x^2-13x+40)

Simple and best practice solution for (8x-6)/(x^2-13x+40)+(1-7x)/(x^2-13x+40) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (8x-6)/(x^2-13x+40)+(1-7x)/(x^2-13x+40) equation:


D( x )

x^2-(13*x)+40 = 0

x^2-(13*x)+40 = 0

x^2-(13*x)+40 = 0

x^2-13*x+40 = 0

x^2-13*x+40 = 0

DELTA = (-13)^2-(1*4*40)

DELTA = 9

DELTA > 0

x = (9^(1/2)+13)/(1*2) or x = (13-9^(1/2))/(1*2)

x = 8 or x = 5

x in (-oo:5) U (5:8) U (8:+oo)

(8*x-6)/(x^2-(13*x)+40)+(1-(7*x))/(x^2-(13*x)+40) = 0

(8*x-6)/(x^2-13*x+40)+(1-7*x)/(x^2-13*x+40) = 0

x^2-13*x+40 = 0

x^2-13*x+40 = 0

x^2-13*x+40 = 0

DELTA = (-13)^2-(1*4*40)

DELTA = 9

DELTA > 0

x = (9^(1/2)+13)/(1*2) or x = (13-9^(1/2))/(1*2)

x = 8 or x = 5

(x-5)*(x-8) = 0

(8*x-6)/((x-5)*(x-8))+(1-7*x)/((x-5)*(x-8)) = 0

8*x-7*x-6+1 = 0

x-5 = 0

(x-5)/((x-5)*(x-8)) = 0

(x-5)/((x-5)*(x-8)) = 0 // * (x-5)*(x-8)

x-5 = 0

x-5 = 0 // + 5

x = 5

x in { 5}

x belongs to the empty set

See similar equations:

| -10-5y=20 | | 34.56+45.54= | | 1y+1/y=2+z | | 2-x=3x+11+5(3-x) | | -4=-12 | | 9+8-7= | | 6x+12y=240 | | x+8/-118/2 | | 2x-4(5-x)=-2 | | 4b+8-5=4b-4 | | 21.8x+30.4-21.2-42.5= | | 2x-15=6x+10 | | y=-2-0+2 | | 6y=12-3x | | -12.6+2=a | | y=-2-1+2 | | 20k^2+20k+9=0 | | 4-4x+8x=36 | | -22-4x=3x-10x | | 11x-5=8x+10 | | 4-4x+x=36 | | 4(x+7)=56 | | 5+-6x=-7 | | 3(3x-1)+4-4x=x+9 | | 3.5*n+1-(6/7)n=4+(1/12) | | -3*4.2=a | | 2x-6=4x/5*5 | | 5a-3a+6a= | | y=-2-2+2 | | 5x+2y+z=108 | | -t/5+7=-4 | | X/5+3y=-5z |

Equations solver categories